II B. TECH II SEMESTER REGULAR EXAMINATIONS, AUG/SEPT 2021 DIGITAL ELECTRONICS
 (Electrical and Electronics Engineering)

Time: 3 hours

Max. Marks: 60

Note: Answer ONE question from each Unit ($\mathbf{5} \times \mathbf{1 2}=\mathbf{6 0}$ Marks)

UNIT - I

1. a) Represent (141) $)_{10}$ in binary, octal and hexadecimal formats.
b) What do you mean by self complementing code? What are weighted and non-weighted codes? Explain with examples.
(OR)
2. a) Subtract (14) ${ }_{10}$ from (46) ${ }_{10}$ using 2 's complement method.
b) Explain about error detecting and correcting codes.

UNIT - II
3. a) Explain in detail about standard SOP and POS forms with examples.
b) Obtain minimal SOP expression for the Boolean function using K-map
$\mathrm{F}(\mathrm{W}, \mathrm{X}, \mathrm{Y}, \mathrm{Z})=\Sigma \mathrm{m}(4,5,9,13,15)+\Sigma \mathrm{d}(0,1,7,11,12)$
(OR)
4. a) Reduce the following function using K-map
$\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Pi \mathrm{M}(0,2,3,8,9,12,13,15)$
b) Simplify the Boolean expression using QM - tabulation method.
$\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma \mathrm{m}(2,4,6,8,9,10,12,13,15)$
UNIT - III
5. a) Design full subtractor and implement using two $4: 1$ multiplexers.
b) Implement the following Boolean function $\mathrm{F}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})=\Sigma \mathrm{m}(0,2,6,7)$ with 8:1 multiplexer.
(OR)
6. a) What is a full adder? Give its truth table. Derive logic expressions for sum and carry and implement using NAND gates only.
b) Construct a 4 to 16 line decoder with five 2 to 4 line decoders with enable.

UNIT -IV
7. a) Explain briefly about different types of flip-flops.
b) Design a 4-bit synchronous upcounter using JK flip-flops.
(OR)
8. a) Design a conversion of JK flip-flop to SR flip-flop logic.
b) Explain the operation of a Twisted ring counter.

UNIT -V
9. a) Explain about Moore machine model.
b) Explain the operation of serial binary adder.
(OR)
10. a) Differentiate between the Melay and Moore Machines
b) What is FSM ? Explain its components.

